Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices
نویسندگان
چکیده
The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic (PV) cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO) films (sub-50 nm) using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm) RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity), and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222) reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10-4 Ω·cm) were obtained and high optical transparency is exhibited in the 300-1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical, and optical properties of the ITO films are discussed with respect to the oxygen ambient nature and etching time in detail to provide guidance for plasmonic enhanced a-Si:H solar PV cell fabrication.
منابع مشابه
Growth conditions effects on the H2 and CO2 gas sensing properties of Indium Tin Oxide
Indium Tin Oxide (ITO) thin films are transparent conducting wide bandgap oxide. In this study investigated optical, structural and morphological properties of sputtered ITO thin films using X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and optical absorption techniques. These measurements revealed that the oxygen gas percentage p...
متن کاملA Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates
The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...
متن کاملPhysical Properties of Reactively Sputter-Deposited C-N Thin Films
This work aims to prepare and study amorphous carbon nitride (CNx) films. Films were deposited by reactive magnetron radiofrequency (RF) sputtering from graphite target in argon and nitrogen mixture discharge at room temperature. The ratio of the gas flow rate was varied from 0.1 to 1. Deposited films were found to be amorphous. Highest Nitrogen concentration achieved was 42 atomic percent whic...
متن کاملVaristor performance of nanocrystalline Zn–Bi–O thin films prepared by reactive RF magnetron sputtering at room temperature
The Zn–Bi–O films were deposited by reactive radio frequency magnetron sputtering in oxygen atmosphere from ZnBi alloy target (wt% ratio Zn:Bi=9:1) on glass substrate at room temperature. The XRD patterns show that the films deposited on tin-doped indium oxide/glass substrates were nanocrystalline. The microstructure of Bi-doped ZnO films was studied by scanning electron microscopy in combinati...
متن کاملFabrication and Characteristics of RF Magnetron Sputtered ITO Thin Films
Indium tin oxide (ITO) films have been deposited onto glass substrates by ifmagnetron sputtering without insitu substrate heating. The as-deposited films have an electrical resistivity of 5x1O a-cm, visible transmittance of about 85%, and infrared (IR) reflectance of above 80% at 5 jim. The effect of sputtering parameters on the deposition rate and the electrical and optical properties of ITO f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016